Bounds for integral solutions of diagonal cubic equations
نویسندگان
چکیده
منابع مشابه
The density of integral solutions for pairs of diagonal cubic equations
We investigate the number of integral solutions possessed by a pair of diagonal cubic equations in a large box. Provided that the number of variables in the system is at least thirteen, and in addition the number of variables in any non-trivial linear combination of the underlying forms is at least seven, we obtain a lower bound for the order of magnitude of the number of integral solutions con...
متن کاملUpper and Lower Bounds of Solutions for Fractional Integral Equations
In this paper we consider the integral equation of fractional order in sense of Riemann-Liouville operator u(t) = a(t)I[b(t)u(t)] + f(t) with m ≥ 1, t ∈ [0, T ], T < ∞ and 0 < α < 1. We discuss the existence, uniqueness, maximal, minimal and the upper and lower bounds of the solutions. Also we illustrate our results with examples. Full text
متن کاملBounds on Positive Integral Solutions of Linear Diophantine Equations
Assuming the existence of a solution, we find bounds for small solutions x of the finite matrix equation Ax = B, where each entry of A, B is an integer, and x is a nontrivial column vector with nonnegative integer entries. 0. Introduction. In [1], [5] and [6] there arise in a topological setting, systems of linear equations with integer coefficients. The problem is to find a bound K depending o...
متن کاملRational Solutions of Pairs of Diagonal Equations, One Cubic and One Quadratic
We obtain an essentially optimal estimate for the moment of order 32/3 of the exponential sum having argument αx + βx. Subject to modest local solubility hypotheses, we thereby establish that pairs of diagonal Diophantine equations, one cubic and one quadratic, possess nontrivial integral solutions whenever the number of variables exceeds 10.
متن کاملFamilies of Cubic Thue Equations with Effective Bounds for the Solutions
To each non totally real cubic extension K of Q and to each generator α of the cubic field K, we attach a family of cubic Thue equations, indexed by the units of K, and we prove that this family of cubic Thue equations has only a finite number of integer solutions, by giving an effective upper bound for these solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1983
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1983-0697069-0